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J. Phys. A: Math. Gen. 15 (1982) 3083-3107. Printed in Great Britain 

Bivariational methods applied to Schrodinger’s and Dirac’s 
equations 

G Wachutka and H Bross 
Sektion Physik der Universitat Munchen, and Sonderforschungsbereich 128, D-8000 
Munich, Federal Republic of Germany 

Received 26 January 1982 

Abstract. A class of bivariational functionals is derived whose stationary points are pairs 
of solutions of the single-particle Schrodinger equation (or Dirac equation, respectively) 
subject to so-called ‘complementary boundary conditions’. The formulation of the 
boundary value problem is sufficiently general to include matching conditions and Bloch 
conditions as well as scattering conditions. It is shown how bivariational translational 
techniques may be applied to problems with three- and two-dimensional translational 
symmetry (calculation of complex band structures and propagation matrices, scattering 
problems). 

1. Introduction 

Many methods for the calculation of solutions of the Schrodinger equation or Dirac 
equation are based on variational principles. If, for instance, the Hamiltonian H can 
be considered as a symmetric operator defined on a Hilbert space (2, ( 1 )), it is well 
known that the ‘energy functional’ cp -(cpl(H -E)cp) is stationary for solutions of 
(H - E)cp = 0. In practical applications, however, the boundary conditions imposed 
on cp are often such that the formal differential operator H cannot be assigned a 
domain D ( H )  such that it becomes a symmetric operator. But in this situation it is 
also well known (Courant and Hilbert 1924) that for certain boundary conditions it 
is possible to modify the energy functional by adding ‘boundary functionals’ so that 
variational methods may be applied as in the symmetric case. The essential idea is 
that the boundary conditions are not included in the definition of the domain of H 
but arise as part of the Euler equation (so-called ‘natural boundary conditions’). 

Nevertheless, there are problems with boundary conditions which cannot be treated 
in this way (for example, scattering problems, or the calculation of propagation 
matrices). Here, as an appropriate technique, ‘bivariational methods’ may be used; 
their feature is to construct a functional (,y, c p ) ~ J ( , y ,  cp) such that the derivative with 
respect to ,y yields the equation ( H  -E)cp = 0 and the natural boundary conditions 
for cp, while the derivative with respect to cp implies a second (‘auxiliary’) equation 
( H  -E)x  = 0 and ‘complementary’ natural boundary conditions for x. Further boun- 
dary conditions (‘essential’ boundary conditions) are imposed on ,y and cp by the 
definition of the domain of J. 

For special applications, both boundary functionals of a single variable and bivari- 
ational expressions have already been derived (Kohn 1948, 1952, Leigh 1956, 
Bevensee 1961, Schlosser and Marcus 1963, Marcus 1967, Ferreira et a1 1974, 1975, 
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Sarker and Taj-ul Islam 1975, Lopez-Aguilar 1979). It seems useful to present a 
comprehensive class of such bivariational functionals which includes the special cases 
and provides new variational approaches for problems which have not yet been treated 
in practice; § 4 deals with some of them. The explicit construction of the bivariational 
functionals and the formulation of the pertinent variational principle are given in 0 3; 
the required definitions and notations are introduced and illustrated in 8 2. Mathemati- 
cal reasoning is postponed to the appendices as far as possible. 

2. Formulation of the boundary value problem 

Consider the Hamiltonians 

H = - A + w  (Schrodinger theory; units: h = 1, m = i) (1s) 

or 

H = - i a V + p + w  (Dirac theory; units: h = c = m = 1) (ID) 

respectively?. 
It is required to find a pair (x ,  c p )  of functions which satisfy 

Hcp = Eq and Hx = Ex (with real energy E )  (2) 

in a region fl of three-dimensional space whose boundary afl  can be represented as 
the union of a piecewise smooth$ surface F and pairs of piecewise smooth surfaces 
Fk,o and Fk.1 (k = 1 , .  . . , M )  

with Fk,o being parallel to and displaced from Fk,l by a displacement vector Tk : 

Fk,o = Tk -t Fk, 1 f o r k = l ,  . . . ,  M. (4) 

The union of boundary surfaces 
In the case where the potential w has three-dimensional translational symmetry 

with lattice G3, can be identified with the three-dimensional Wigner-Seitz cell 
WSZ,; in this case F = 0 and Tk belongs to G3. As a further case, one may think 
of a potential w with two-dimensional translational symmetry with layer lattice G2; 
then R will be a ‘column’ WSZZ x (zL, zR) whose cross sections parallel to the layer 
lattice are two-dimensional Wigner-Seitz cells such that Tk E Gz. Here, F consists of 
those parts of an which are contained in the planes z = zL and z = ZR (see figure l (a ) ) .  

In scattering problems with a localised potential (Kohn 1948), SZ can be chosen 
as a large sphere: then Fk,o = 0 and Fk.l= 0 (i.e. F = an). 

Fk,* is denoted by S,. 

t ( i )  Schrodinger’s and Dirac’s theories are treated simultaneously here and in the following sections; 
subscripts ‘S’ and ‘D’ are used to denote corresponding relationships. (ii) The potential w may be local 
( w ( r ) )  or non-local ( w ( ( r ,  r ’ ) )  in principle, but for simplification the notation w ( r )  is used throughout 
because the generalisation to a non-local w is obvious. (iii) For the Dirac matrices the representation 

0 1  1 
a=( 1 0  ) o w ;  @=io -;)@I2 

is used (a = Pauli matrices; f2 = 2 x 2 unit  matrix). 
$ For the meaning of ‘piecewise smooth’ refer to appendix 1. 
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( a 1  I 6 1  

Figure 1. ( a )  Boundary of the region R in the case of planar translational symmetry. ( b )  
Inner partition of R .  

It is further supposed that the region R is partitioned into the parts Ro = Rb“ 
and RI = us:, R:“ where Rl” are bounded domains with piecewise smooth boundaries 
such that ani = U,”:, aRj” holds and Ro and Rl are separated by a piecewise smooth 
surface S = aRo n aR1 (figure l ( b ) ) ;  the potential w is assumed to be continuous within 
Ro and al. For example, in the case of a ‘warped muffin-tin potential’ R1 represents 
the union of all muffin-tin spheres K ( r j ;  s i )  within R (such that w(r )  = Vsph(lr -ril) for 
Ir - r j l s s j ) ,  or S can be thought of as being a plane surface separating two adjacent 
layers of a layered crystal structure (figure 2). 

2:z.m z :zs Z:Z+m 

Figure 2. Region R in the case of scattering at z = z,. 

The solutions of equation (2) have to be elements of an appropriate Hilbert space 
V and they are subject to certain boundary conditions on S u a R  which can be 
expressed conveniently using the following notations. For any domain fi let L2(h, C ” )  
denote the set of square-integrable functions 4 : h+ C” and let Wik) (fi) denote the 
Sobolev space consisting of those functions 4 E L2(h, C“ )  for which all partial deriva- 
tives (in the distribution sense) 0’4 := 8“’4/ax? a x l a x >  with 111 := Il + 12 + 13 s k belong 
to Lz(& C”). Equipped with the inner product : . I . )k , f i  defined as 
(x ) ( P ) k , f i : = x ; l l l s k j f i D ; (  +D’q d3r, Wik’(fi) is a Hilbert space. 

The Hilbert space V of which the solutions of equation (2) shall be elements is 
defined as 

v := { ~ : R + c ;  4 I n i J ) ~  w:”(RI”) for i =o,  1 ; j  = I , .  . . , q l }  (5s) 

with inner product ( ~ 1 4 0 )  := X,=O,l Z;il (.&)z,n;~), 
V:={JI:R-,C‘; ;~~~)E Wi”(R!”)for i=o,  I ; ~ = I , .  . . , q , )  (5D) 
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with inner product ( x ~ Q )  := Zi=o,l Z ~ L I  (,&)l,ay) ($16 denotes the restriction of $ 

Note that the Hilbert space V contains all functions which solve equation (2) in 
R, and Rl in the classical sense and have a continuous probability density and 
probability current in a. 

Following NeEas (1967, ch 2, § 4 and ch 3, 0 1) a superficial measure (T can be 
defined along ano U an,; so for any measurable part r c ano U 80,  the space L z ( r )  is 
well defined. The unit normal 

to A). 

(6) 

exists almost everywhere along aR0u8R,. The subspace 8 :={$E V; ~+hla:~)s~(a!’)) 
for i = 0, 1 ; j = 1, . . . , qi} is dense in V (with respect to the norm 11 1) := J( 1 - 1). For 
$ E 8 and a = 0 , l  it makes sense to define almost everywhere: 

outward normal to region nl for r E S 
for r E dR\S { outward normal to region R n ( r )  := 

lim (n  ( r ) V $ ( r ’ )  for r E S  
r - r  

r’sal 

lim (n (r)V)‘$(r’) for r E S ,  
r - r  

a;$l(r) := 

for r E S 

at$o(r) := (7b 1 
for r E F k . 1  and Fk.0 = Tk fFk,lf 

8t4(r) := lim (n (r)V)u$(r‘)  for r E F. (7c 1 
r - r  

As shown by NeEas (1967), the mappings 8 3 1 4 - a 3 ~  us,) and 8 34-83  E 

L z ( F )  are continuous; hence there exist unique linear continuous extensions on V 
(so-called ‘trace operators’). Since no confusion arises these extensions are denoted 
by the same symbols at$, and a:$; it is said ‘4 E V takes on its boundary values in 
the sense of traces’. 

The boundary conditions to which the solutions (,y, Q )  E V x V of equation (2) are 
subject are divided into two groups. The first group consists of the ‘natural’ boundary 
conditions defined by 

(a =0,  1: Schrodinger theory; a =0:  Dirac theory). Here, t ( r )  is a given complex- 
valued ‘transfer function’, bounded almost everywhere (i.e. t E L,(S U S,) ) ,  and chosen 
appropriately to the problem. For example, t ( r )  := 1 means that ,y and q are con- 
tinuously differentiable (or continuous, respectively) at r E s, if they belong to the 

M 
t i.e. S, is used as parameter space for the arguments of t,h and its normal derivative on (Jk , ,  Fk,”; see 
figure l (a ) .  
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subspace V n %“(ao) n %“(al) (or V n %‘(az,) n %‘(al), respectively); in the case of 
a periodic potential t ( r )  := exp(ikTl) for r EF!,’ is equivalent to a Bloch condition?. 

The second group comprises the ‘essential’ boundary conditions compelling ,y 
and cp to take the following form on the surface F. Let fo and g o  be given square- 
integrable functions F + @” (with n = 2 in Schrodinger’s theory and n = 4 in Dirac’s) 
and let Uo(F) and Wo(F) be linear spaces of square-integrable functions F + @” such 
that 

for any f = (f‘O”f‘’’)T~ Uo(F) and g = (g“’, g “ ’ ) T E  WO(F)  or 

for any f E Uo(F) and g E Wo(F), (9D) 

respectively. Then, writingfo = (fb”, 
ger’s theory, ,y and cp are subject to 

and g o  = (gbo’, gb”)T in the case of Schrodin- 

or in Dirac’s theory 

f o r r E F  

where f E Uo(F) and g E Wo(F)  are arbitrary. 
Since the trace operators are surjective mappings W%’ (fi) 3 t+b E 

(ah)$ the essential boundary conditions only make sense if the data fo, go,  w $ k - u - 1 / 2 )  

Uo(F), Wo(F) are such that 

or 

respectively. 
Boundary conditions of the kind (lo), (11) appear in scattering problems (for 

example, see Kohn 1948); here fo and go stand for the incoming waves, while f and 
g represent the scattered waves (and their normal derivatives on F, respectively). The 
computation of propagation matrices (Marcus and Jepsen 1968, Bross 1977) also 
leads to boundary conditions of the form (lo), (11) with an appropriate definition of 
f ~ ,  go, U@) and Wo(F) as will be shown in 0 4.1. 

It must be emphasised that it is not sufficient to pose the boundary value problem 
only for a single function cp, if variational techniques are to be applied, but it is 

t See Kohn (1952), for example. 
$ See NeEas (1967, ch 2, theorems 5.5 and 5.8); the definition of the Sobolev spaces W$p’z’ id) is also 
given there. 
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necessary to consider pairs (x, cp) of functions with ‘complementary’ boundary condi- 
tions (i.e. the transfer functions of ,y and p are related by t *(t*)-’, and the ‘free’ 
parts f~ U@) and g E Wo(F) satisfy (9), the so-called ‘compatibility condition’) to 
ensure the existence of a variational expression Jk, cp) whose stationary points are 
solutions of equation (2) with (8) as natural boundary conditions and ( lo) ,  (11) as 
essential boundary conditions in the usual sense of the calculus of variations. Except 
for some special boundary conditions, a functional of a single variable J(p) would 
not yield these properties (Arthurs 1980, theorem 3.1.1). 

3. Variational expressions 

We now derive a class of variational expressions J :  W x U -P @, k, c p ) ~ J h ,  cp) which 
become stationary only for solutions of the boundary value problem posed above. 
Consider the ‘energy functional’ 

I : W x U + @ ,  Ik,q):=J x+(H-E)cpd3r  (13) 
noun1 

defined on the affine submanifolds of V 

U:= {p E V ;  cp satisfies equation (10)) = cpo+  Uo, 

W:= k E V; x satisfies equation (1 l)} =,yo + WO, 

with some (arbitrarily chosen) c p o €  U and 
by condition (12)) and subspaces of V 

W (the existence of which is ensured 

(15s)  U0 := {V E (cp IF, anp IF)T E UO(F)}, wo:=G: E v; CYIF, anxIFlTE WO” 

or 

U0 := {cp E v; p IF E Uo(F)l, wO:=k E v; X I F  E wO(F)), (15D) 

respectively. Here $ I F  means the restriction of the trace of (I, to F. By the definition 
(15) the trial functions x and cp are subject to the ‘essential’ boundary conditions only 
(i.e. their variations must be elements of WO and UO),  whereas the boundary conditions 
(8) are required to arise as part of the Euler-Lagrange equations (i.e. they can be 
derived from SJ = 0). It is well known (Arthurs 1980, after theorem 2.3.1) that this 
can be accomplished by adding an appropriate ‘boundary functional’ K to I. To derive 
the general form of K ,  the first variation SI is calculated for ,y E W, cp E U, Sx E WO 
and Scp E Uo, assuming that x and cp are solutions of (2) and (8). Hence 

(Note the correspondence ($s, i8,GS) * ($,, $d) = $D between the Schrodinger 
wavefunction $s and its first derivative and the ‘large’ and ‘small’ components $, and 
$d of the Dirac bispinor GD; thus here and in the following expressions the correspond- 
ing term in Dirac’s theory can be obtained from Schrodinger’s theory by simply 
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substituting 

Since J :=I + K  is required to satisfy SJ = 0 (i.e. SK = -SI), equation (16) suggests 
K is a sesquilinear form 

K(x,  c p )  = J J t: C Xx,(r)*k;f(r, r’H!cpq(r’) d d r ’ )  d d r )  
sus, sus, p,q=O,l a.P=O.l 

+ J J C a;x(r)*kaP(r, r’)atcp(r’) da(r’) da( r )  (17s) 
F Fol,P=0.1 

with some suitable kernels k g ,  kaP,  kPq, k, A, B, C, D. Evaluating the first variation 
SK for solutions (y, cp) E W X U of the equations (2) and (8) and for arbitrary variations 
(Sx, Scp) E WO x U. and setting SI = -SK, we obtain the result 

or 
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respectively, where A ,  ~l . ,  p, 7: ( S  u S,)  x ( S  u S,)  -P Q= (or p : ( S  U S, )  x ( S  u S, )  + Q=(4s4), 

respectively) are arbitraryt kernels which can be interpreted as weight functions, and 
a(?, f ’ )  means the surface distribution jsus, S ( f ,  ?‘)$(r‘) da(f’)  := $ ( r )  for r E S us, 
while vanishing elsewhere. 

Note that the volume integrals of the functional J may be altered using Gauss’ 
integral theorem. For example, J can be represented in a symmetric form as$ 

JCU, cp) = J [vx*vq +(w - E ) X * ~ I  d3r 
noun1 

+ f i  J (gAcunq -x+cmnfo) da+constant, 
F 

respectively. 
The variational principle for the boundary value problem posed above can be 

formulated in the following way. 
(1) If (x, q )  E W X U is a pair of solutions of equation (2) in Ro U RI satisfying the 

natural boundary conditions (8), then SJ(x,  q, SX, S q )  = 0 for any (ax, S q )  E WO x Uo. 
(2) Conversely, if (x, q )  E W x U satisfies S J h ,  q, S x ,  S q )  = 0 for any (Sx, S q )  E 

WOX Uo, then (x, q )  is a pair of solutions of equation (2) subject to the boundary 
conditions (8). 
For the proof, see appendix 1;  it is worth mentioning that the second statement is 
proven under the weaker assumption S J k ,  q, Sx, S q )  = 0 for any (Sx, S q )  E V o x  Vo 
with Vo := {$ E V :  = 0 )  (Schrodinger theory: a! = 0, 1; Dirac theory: a! = 0). 

t More precisely: the kernels must define linear operators L2(S U S , )  + LziS U SJ; 6 has to be interpreted 
as identity. 
$ T h e  form (19s) indicates how the domain of J may be extended to functions $ :n+C;  $ ~ ~ I , J ’ E  W ~ ” ( n ~ ” )  
for i = 0, 1; j = 1, . . . , qt if the boundary conditions are such that all normal derivatives (which are not 
well defined even in the sense of traces in this situation) can be eliminated from the functional J ;  see 
appendix 4. 
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The weight functions A, p, p, T may be chosen arbitrarily in principle; if the 
variations (Sx, S q )  are allowed to vary in the whole space WO X Uo, the result of SJ = 0 
will be independent of the weights. But if (Sx, S q )  are restricted to some submanifold 
of WO x U. (for example, in numerical applications; see Marcus (1967), Ferreira et a1 
(1974, 1975), Lopez-Aguilar (1979)), this is not true, and the choice of the weights 
will have an influence on the quality of approximate solutions. An analysis of the 
weight dependence of approximate solutions often leads to criteria which show how 
to choose the weights best. 

Some conditions on the weight functions can be obtained by demanding that the 
Euler-Lagrange equations derived from SJ = 0 should show the same symmetries as 
the initial boundary value problem. Since equations (2), (8), (9) and (lo), (11) are 
invariant under the transformation 

cp " X ,  X H Q ,  t - (t*)-', 
(20) 

the functional J should transform into its complex conjugate under this operation. 
As shown in appendix 2 this condition is satisfied if and only if 

A(?, ?') t (r ' )+t(r)- 'p(?' ,  ?)*=a(?, ?'I, 

(U, Uo(F), fo) - ( w, WO(F), go), ( w, WO(F), go)  (U, UO(F), fo), 

p (2, ?')t (r') + t(r)-'A (?', ?)* = a(?, ?'), 

T(?, ?')r(r') = t (r)- 'T(?' ,  ?I*, 
(21s) 

p(?, ?)t(r') = t(r)-'p(?', ?I*, 
or 

p(?, f f ) r ( r f )  + t(r)-'p(?', ?I+ = a n  (r)S(?, ?'), (21D) 
respectively. 

Furthermore, if t-' f t* ,  A and p are uniquely determined by (2lS): 

A (?, ?') = p(?, ? I )  = ( t ( r )  + (t(r)*)-')-'8(?, (22s) 
The correspondence between Schrodinger wavefunctions and Dirac bispinors men- 
tioned above suggests that the 4 x 4 matrix p (?, ?') has the form+ 

1 -ips(?, ?')Iz, As(?, ?' )an (r ' )  
an (r)ps(?,  ?'), -iTs(?, ?')Iz 

where I2 is the 2 x 2 unit matrix, U are the Pauli matrices and As, ps, ps, T~ are complex 
valued. Thus a complete analogy between Schrodinger's and Dirac's theory can be 
achieved, because condition (21D) becomes equivalent to (21s) with AS, ps, ps, T S  

substituted for A ,  p, p, 7. 
By the choice T = 0 and a change of the division of the boundary conditions into 

natural and essential ones, the domain of the non-relativistic functional J can be 
modified so as to include less regular functions of the class Wi') (see appendix 4). 

4. Applications and comparison with other work 

In this section, some examples are given which illustrate how well known methods 
for solving Schrodinger's equation (or Dirac's equation, respectively) can be derived 

t Weights of the form (23,) are used in the RAPW method; for example, see Loucks (1967, with A s  = ps = 4; 
p s  = T~ = 0) or Sarker and Taj-ul Islam (1975, with As = p s  = 0; ps = 1; T ~ E  Ut). 
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from the variational principle stated above. The variational principle can be used to 
justify these methods as ‘optimal’ approximation techniques. The way in which these 
methods can be generalised, or new variational methods can be established, for 
problems subject to more general boundary conditions of the form (8) and ( lo) ,  ( l l ) ,  
is also shown. 

4.1. Calculation of propagation matrices 

Let w be a potential with two-dimensional translational symmetry, and let R be the 
‘column’ WSZ2 x (zL, zR) shown in figure l ( a ) .  Set F := FLu F R ,  where F L ( F R )  means 
that part of al2 which is contained in the planes z = zL(zR),  and look for solutions of 
the following ‘initial boundary value’ problem. 

Given an energy E and a two-dimensional propagation vector kll find a pair of 
functions (x, 9) which satisfy equation (2) in l2 and equation (8) (with t ( r )  := exp(ikIlT0 
for r E FI,l and Ff,o = Tf +Ff , , )  and the ‘initial conditions’ 

a~cp(r )=ra . ) ( r ) forr~FRandcy  =0,1,  dzx( r )  = g p ’ ( r )  for r cFL and cy =0,  1, 
(24s) 

respectively. 

pair of linear operators P(zL, zR) and P(zR, zL) (‘propagation matrices’) with? 
Of special interest is the value of and a;xlFR; i.e. it is required to find a 

or 

respectively. 

P(zR,  zL) = P ( z L ,  zR)-l holds. The appropriate data fo, go, Uo(F) and Wo(F) are: 
Since (t*))-’ = t, the problem is posed symmetrically for x and 9 ,  and therefore 

t See Marcus and Jepsen (1968) and Brass (1977). 
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or 

respectively and 

Uo(F) := {f: F + @” square integrable; f IFn = O}, 
Wo(F) := {g: F + @” square integrable; glFL = 0) 

(with n = 2 in Schrodinger’s theory and n = 4 in Dirac’s). By this choice of the data, 
condition (24) can be written in the form (lo), (ll),  and the compatibility condition 
(9) is satisfied. The I F  term of the boundary functional K is given by 

r 

If fR and gL are chosen such that 

or 

~ L = & L ,  Z R ) ~ R ,  (29,) 

respectively, it is accomplished that gp ’  = azcp IFL (or gL = cp IF,, respectively) holds. It 
can be recognised from (28) that the physical meaning of the stationary value of 
J(x, cp) for x = cp satisfying (2), (8) and (24) is merely ih times the probability current 
passing the boundary surface F L .  

The ‘propagation matrix method’ first proposed by Marcus and Jepsen (1968) can 
be understood as a special case to which the variational principle is applied. The true 
wavefunctions (,y, cp) are approximated by a finite planar Fourier series (‘mixed 
representation’): 

Here gj E G; = two-dimensional reciprocal lattice, r = (q, z ) ,  and U], zlj E V ~ L ,  ZR) 

defined as 

V(zL, zR) : = { U :  [zL, ZR]’ @; U is twice continuously differentiable in (zL, zR); 

U and du/dz possess a continuous continuation on [zL, ZR]; (31s) 
d2uJdz2 is square integrable}, 

v(zL, zR) :={U : [zL, ZR] + c4; U is continuously differentiable in (zL, zR) 
(3 ID) 

and continuous on [zL, ZR]; duldz is square integrable}. 
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It is convenient to define the column vectors 

u ( z )  :=(Ul(z), . I uN(Z))TE @4N9 u(z):=(u1(z), . . . , U N ( Z ) ) T € @ 4 N ;  ( 3 2 ~ )  

then the essential boundary conditions can be written as 

( Z R )  = U R  and U (ZL) = UL. (33) 

The ‘best’ approximations 
the resulting Euler-Lagrange equations are 

and 6 have to satisfy SJ = 0 under the restriction (33); 

duldz = Au and dvldz =Au (34) 

with A being defined as 

(3 5 s) 
0 IN A : = (  o ) ,  wmn(2):=Smn(lkll+gm12-E)+wmn(z), 

A :=-i(zN@Ct’,)w, W m n  (2) := S m n  (a (kll + g m )  + P - E )  + I 4 w m n  (Z  ), (35,) 

where ZN denotes the N X N unit matrix, and w , , ( z )  are the planar Fourier coefficients 

(IF1 means the area of the two-dimensional unit mesh of G2). Equations (34) and 
(33) define an initial value problem, which is solved by the fundamental system 
@(z, zo) satisfying 

aZ@(z, ZO)  =A(z)@(z,  zo),  B(z0, zo) = 1~,(0r respectively). (37) 

Then u(z)  =@(z, zR)uR and u ( z )  =@(z,  zL)uL, i.e. @(zL, zR) is a finite-dimensional 
best approximation of the operator P(zL, ZR). 

Note that the method of Marcus and Jepsen (1968) is derived here without 
truncating an infinite system of differential equations, but as a necessary condition 
for SJ = 0 on a submanifold of W x U and is hence justified as an approximation 
procedure. Furthermore, the variational expression can be used to show that the 
so-called ‘matching condition’ postulated by Marcus and Jepsen 

u ( t o + O )  = u(2o -0 )  and u(z0+0)=u(z0-0)  (38) 

for any zo E ( I= ,  zR) where A is not continuous arises as a natural boundary condition for 
SJ = 0 (see appendix 3). 

It must be emphasised that (38) generally does not hold for the planar Fourier 
transforms 6 =SE]  and U“ = S[$] of approximate solutions E, 4) of the true wave- 
functions h, c p )  obtained by another approximation method, unless the differential 
equations (34) are satisfied by v’ and U”. Therefore, it is not reasonable to postulate 
the matching condition (38) in every case, but rather to consider what condition arises 
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from demanding SJ = 0. The advantage of a variational approach is confirmed by 
numerical investigations made by Bross (1982). 

4.2. Calculation of complex band structures 

Let it now be supposed that the potential w has three-dimensional translational 
symmetry with lattice G3 = Zal@Eaz@Ha3 and that R is the oblique column R = 
{rIl+(a3; rliE WSZ2, 0 G 6 s 1) shown in figure 3. Replacing the essential boundary 
conditions given in (24) by natural ones given in (8) for r E FR U FL yields the following 
eigenvalue problem (which is closely connected with the problem considered in § 4.1). 

Given a real energy E and a real two-dimensional propagation vector kll, find a 
complex number k, and a pair of functions k, c p )  such that equations (2) and (8) are 
satisfied with the transfer function t chosen such that t ( r )  = exp(ikT1) for r E F L , ~ ;  
Fl,o= X+F1, l ;  k:=kll+k,e,. 

Figure 3. Region R in the case of three-dimensional translational symmetry. 

Here, there are no essential boundary conditions; instead, one of the 'left' or 'right' 
boundary surfaces FL and F R  is contained in S,  and is support for a natural boundary 
condition. For example, set F1,l := FL and Fl,o = a3+F1,1. Since rl  := is given by 
r1 =exp[i(kll+kie,)a3], t l  may be regarded as eigenvalue instead of k,. 

One possibility to determine t l  is to calculate the spectrum of the propagation 
matrix obtained from the initial value problem (24) (Bross 1977), but in practice this 
method involves difficulties, because the planar Fourier expansion will slowly converge 
for potentials with singularities. Therefore, it seems reasonable to use the variational 
principle SJ = 0 directly in the following way. Approximate x and cp by 

where {vi; j E N} c V and hi; j E N} c V are appropriately chosen. The condition SJ = 0 
yields a linear homogeneous system of equations for Cj and Dj whose matrix elements 
depend nonlinearly on t l  in general; but since the weight functions A, p, p, 7 in the 
functional J can be freely chosen, a linear (generalised) eigenvalue problem for t l  is 
obtained by setting? A = p = p = 7 = 0 in the F1.1 integral. Then J separates into the 
sum 

Jk, cp)=ED:.fkk, cpi)Ct-fiDgBkk, cp1)Dt (40) 
k.1 

t Alternatively, to obtain a linear eigenvalue problem for ( f J *  we could choose p = 7 = 0, A (i, 7 )  = 
/A(?, i ') = (tJ18(?, ?'). 
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where the boundary operator B is defined as 

, 

and j means the remaining terms of J. The eigenvalue problem 

(42) 
must be handled carefully because B k k ,  c p r )  will be a singular matrix with, generally, 
large kernel. Since no physical meaning can be attached to ( t i (  = 03, numerical and 
analytical solutions to (42) must exclude this condition. The formulation of (42) 
provides a way to calculate complex band structures (E, kli)-k, by means of linear 
eigensystem analysis (for which quite efficient computer programs are available; e.g. 
see Wilkinson and Reinsch (1971)) instead of determining the zeros of a secular 
determinant (which is done in KKR methods; for example, see Holzwarth and Lee 
(1978)). 

Since each eigenvalue t l  corresponds to a different boundary condition, it is essential 
that the basis functions xi and pi have sufficient degrees of freedom on F1,l and Fl,o 
to satisfy condition (8) for a continuum of t l  values enclosing the spectrum of (42); 
otherwise the subspaces of V spanned by those linear combinations of x,  and (o, which 
satisfy the boundary condition (8) on F1,l U F I , ~  could be null for some t l ,  in which 
case and 4 would not represent the behaviour of the ‘true’ solutions x and cp at 
the boundaries F1,l uFl,,, sufficiently well. 

The usual way to formulate the problem is the following. 
Given a real two-dimensional vector k!l and a complex number k,, find a real 

energy E and a pair of functions k, (o) such that equations (2) and (8) are satisfied 
with the transfer function t chosen as above. For real k ,  this is exactly the well known 
‘single-cell formulation’ of the band structure problem; since t ( r ) - ’ =  t(r)* for r E S,  
in this special case, it is not necessary to distinguish between cp and ,y (see equation 
(20)), and the variational expression J may be regarded as a functional of the single 
argument cp = x ,  Specifying the weight functions A ,  p,  p ,  T yields expressions J(cp) 
which have already been derived by many authors for special numerical methods 
(APW method and related methods; see Leigh (1956), Schlosser and Marcus (1963), 
Loucks (1967), Marcus (1967), Bross and Hofmann (1969), Bross et a1 (1970), Ferreira 
et a1 (1974, 1975), Sarker and Taj-ul Islam (1975), Lopez-Aquilar (1979)). For the 
non-relativistic case, Marcus (1967) has given the most general functional cp ++J(cp, cp) 
with local weight fuhctions ( A  (?, f ’ )  = A  ( f )s( f ,  ?’) etc), where the trial functions cp 
may be discontinuous for r E S but have to satisfy the Bloch condition (8) for r E S, .  
Sarker and Taj-ul Islam (1975) used a special form of the relativistic functional J 
(see footnote on p 3091) in the RAPW method. Non-local weights (= angular momen- 
tum projection operators) were considered by Ferreira et a1 (1975). 

Making use of expression (19), all these methods can be generalised for complex 
values of k ,  in the following way. Introduce the complex propagation vector 
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k = (kll, k,) and define 

Vk := {cp E V; a:cpo(r) = exp(ikT’l)a:cpl(r) for r E S,  and a = 0, l}, 

vk* := Gc E V; aExo(r) = exp(ik*Tl)aEXl(r) for r E S ,  and a = 0, l}, 
(43s) 

Vk := {cp E V; cpo(r) = exp(ikTl)cpl(r) for r E S,} ,  

vk* := & E V;  Xdr) = exp(ik*T’l)Xl(r) for r E S,}, 

respectively (i.e. k, cp) satisfy the natural boundary conditions for r E S,) .  Since Vk c U 
and Vp c W the functional Vk* x Vk 3 k, cp) H J ~ ,  cp) E @ is a variational expression 
which can be used in the usual way (Rayleigh-Ritz method) to get approximations 

N N 

j = l  
and 2 C Bjxi, A ,  Bj E @, (44) 6 = C AjV j  

j = l  

where {pi; j e  N}c Vk and k j ;  j E  N}c Vk* are suitable linearly independent sets of 
functions. The condition 6J = 0 leads to a generalised linear algebraic eigenvalue 
problem of the form 

N N 

n = l  n = l  
C j k m ,  ~ n ~ n  = ~ ( k )  C S(xm, c ~ n ~ n ,  

(45) 
N N 
C j k m ,  Vn)*Bm =E(k>*  C Skm, pn)*Bm, 

m = l  m = l  

with S k ,  cp) := jn x+cp d3r a n d j k ,  cp) := Jk, cp) + E ( k ) S k ,  cp), thus yielding the depen- 
dence k * E ( & )  E @. Seeking those values of k, for which Im[E(k)] = 0, the ‘complex 
band structure’ k H E & )  E R is finally obtained. In particular, if cpj and xi are con- 
tinuously differentiable or continuous, respectively (e.g. MAPW functions used by Bross 
and Hoffmann (1969) and by Bross et a1 (1970)), the variational expression J reduces 
to 

(46s) 

Jk, cp) = 3 x+(H -E)cp d3r +1 [(H -E)x]+cp d3r. (46D) 
n Jn 

This form of the functional proved adequate for numerical calculations of the complex 
band structures of AI, Cu and Ni using the complex version of the MAPW method 
(Bross 1976, Bross et a1 1979). 

4.3. Scattering problems 

An important feature of the variational principle SJ = 0 is the fact that it also holds 
for scattering problems. As a first example a result derived by Kohn (1948) will be 
verified. 

Let w be a potential, which scatters ‘incoming’ plane waves exp(iklr) (kl E R3; 
energy E = k:) elastically into ‘outgoing’ waves with asymptotic behaviour: 

exp(ikr) 
cp(r) = exp(ikIr) + A ( L ~ ,  - r (47) 

(here x^ means the unit vector in direction of x;  k = lk1l; r = Irl). An appropriate 
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formulation as a variational problem is possible in the following way: Set Cl := KR := { r  E 
R3; Irl s R }  and F := an = aKR (and let R + 00 afterwards) while Fk,l= Fk,O = S = 0. 
Define E( r )  := exp(ikr)/r and let for kl, k~ E R3 

Then the boundary condition (47) takes the form of equations (lo),  (11) and the 
compatibility condition (9) is also satisfied since 

= J B(k*z, i)A(k*~, F) da(f)R’[E(R)a,E(R)-E(R)dE(R)I = 0. (49) 
aK1 

Thus the variational expression is given by 

J ( X ,  q )  = J X * ( H  - k 2 ) q  d3r 
n 

[exp(ikzr?)aE ( r  ) - a, [exp(ikzrF)E (r )]I r = RA (k*i, f )R  Ja. 
+ jdK1 

(50)  

In the limit R +a, the factor multiplying A(Ll, f )  becomes -4.n8(-12, f )  (Dirac 
1947) and (50) reduces to Kohn’s expression 

which reveals the physical meaning of the functional J in this case. 
As another example consider two semi-infinite media R2 x (--a, z,) and R2 x ( z , ,  

+a) with common boundary z = z,; suppose each of them to have three-dimensional 
(either infinitesimal or discrete) translational symmetry when extended to full three- 
dimensional spacet. Further, suppose the complex band structures E(kl1, k,) have 
been calculated for each semi-infinite medium separately (see §4.2) ,  so that for a 
given energy E and a given real two-dimensional propagation vector kll the sets {k?*<) ; 
p = 1 ,2 ,  , . . .} (for z < z,) and {k?” ; v = 1 ,2 ,  . . .} (for z > z , )  of complex values of 
k, are known. Adopting the notation of Bross (1977), let b(k:“.”, r )  and b(k?”, r )  
denote the corresponding solutions cp of Schrodinger’s equation (2) subject to the 

t In this section reference is made to Bross (1977) and free use is made of his results. 
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Bloch condition (8). The numeration of the values of k L  will be such that 

The scattering problem can be formulated as follows. Define R as column WSZ2 
x (z-,, z+,) (with z+,+ +oo and z-,+ --CO afterwards) which is separated into 
no := WSZz x (z- , ,  z,) and R1 := WSZ2 x ( z , ,  z+,) by the surface S (  = intersection of 
the plane z = zs  with 0). Analogously to § 4.1, set F := F+,u F-, where F,, means 
that part of 842 which is contained in the planes z = za,; the remaining part of aR is 
of the form S,u u K I F l , o  (see figure 2). Given an energy E and a wavevector kll, find 
a pair (,y, (p), of solutions of the Schrodinger equation (2) in RouR1 satisfying the 
Bloch condition (8) or matching condition, respectively, on S,  U S ( t ( r )  = 1 for r E S 
and t ( r )  = exp(ikl1Tl) for r E FIv1) with asymptotic behaviour 

where K E (1, . , . , U<} and A E (1 + U<, , . . ,2u<} are fixed. 
To make equation (53) correspond to equations (lo), (1 l), choose 

I 2u> 

u=l+u, 
and g l F + ,  = D,(b(k',".", r ) ,  &b(k(IV.>), r))=;  B,, D, E C 
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The compatibility condition (9) is also satisfied because 

[d,b(k:"3'', r)*b(k'_P3>', r ) -b(k?' ) ,  r )*dZb(ky9>) ,  r ) ]  d2rl,= 0 I,,, 
for Y E (1 +U,, , . . ,20,} and p E (1, . . . , U,}, 

(56 )  

J [d,b(k?.", r ) * b ( k p < ) ,  r ) - b ( k Y , < ) ,  r )*dz6(k?<) ,  r)] d2rll= 0 
F- m 

for ~ ( 1 , .  . , ,U<} and T E { ~  +U<,  . . . , 2 ~ , }  (see Bross 1977, equation (2.31)). 
Note that not x but x* is to be interpreted as a solution of a real scattering problem 

(see figure 4). As above in Kohn's expression, the I F  term of the boundary functional 
K has a simple physical meaning because 

5 /F[(x*+gbO)*)(d,v -fb")-(&x*+gb"*)(v -fb"')ldo 

=AA J [a,b(k:h'c), r)*b(k:""', r ) - b ( k ( * . < ' ,  r)*d,b(k:".", r)] d2rll, 
F- ,  

i.e. the factor multiplying the scattering amplitude AA is 'i  times the probability current 
of b(k',"*", r )  passing FL'. 

The practical application of the variational formulation of the scattering problem 
to the case of a stacking fault was successfully demonstrated by Bross (1981, 1982). 

, @  

Figure 4. Schematic representation of the incoming and scattered waves contained in the 
wavefunctions cp. ,y and ,y*. 

5. Summary 

Considering a class of boundary value problems arising in Schrodinger's or Dirac's 
theory of single-particle states, a family of variational expressions has been derived 
whose stationary points are solutions of the corresponding boundary value problems. 
These variational expressions represent a generalisation of previous results obtained 
by other authors for special applications. It is shown that the given formulation of 
the boundary conditions is sufficiently general to include scattering conditions, gen- 
eralised Bloch conditions, or initial value conditions connected with the propagation 
operator method. The variational principle may be used to derive necessary conditions 
for approximate solutions of the boundary value problems and thus enables the 
application of the Ritz method and other numerical techniques. Because the given 
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formulation contains some weight functions controlling the behaviour of the trial 
functions at the boundaries, it is possible to stress or to relax the natural boundary 
conditions for approximate solutions by specifying these weights appropriately and 
to examine the quality of the approximation by varying them. 

Appendix 1. Proof of the variational prinxiple 

The first part of the proof is based on results presented by NeEas (1967) whose 
notation will also be used here. Let denote the class of bounded domains h 
such that the boundary ah is described by local maps which have Lipschitz-continuous 
derivatives up to order k (NeEas 1967, ch 2, § 1.1). It is supposed that any bounded 
domain Rj” of the partition R = U;:, R t ’ u  U;:, Cl:“ has a ‘piecewise regular’ boun- 
dary in the following sense (NeEas 1967, ch 6, § 1.3). Let fi be one of the domains 
Ri”; then 

(i) there exist fLl  EA"),^ such that fL = n7:’=, f i ~ ;  
(ii] fi E A(’)*’: . ,  
(iii) if Al := interior of ahl n ah (with respect to ah), then AI n Ak = 0 for 1 f k ,  and 

(iv) the sets F n a f i ,  an, Fk.* n a f i ,  S n ah are of the form uIcL A, with 

If is a measurable subset of aRo U aR1 and $ belongs to V (refer to definition 
( 5 ) ) ,  az$ilr means the restriction of a:&( = boundary values in the sense of traces) to 
r (understood as element of L2(r ) ) .  

The above assumptions are sufficient to ensure that Gauss’ integral theorem holds 
(NeEas 1967, ch 3, § 1.2) and that the following lemma is true. 

the superficial measure of afi\Uy,, A, i? zero; 

L c { l , .  . . , p ^ } .  

Proof. Let fi be one of the domains Rj”, let 

vO(fi) := {$ E wiz) (fL); $IFnJ f l=  an$IFnJfl = 01, 

VO(R) := {$ E wy (h); $IFnafl = 0)  

(A1.3s) 

(A1.3D) 

and let := (aflou aRl\F) n 86. It is sufficient to show that Vo(fi) 3 $ - ($lr, an$lr) E 
L2(r)’ (or Vo(fi) 3 $ - $ l r ~  L z ( ~ ) ~ ,  respectively) maps Vo(fi) on a dense subset of 

In the case of Schrodinger’s theory, let (h‘”, h“)) be an element of LZ(r)’. There 
exist L,  M c (1, . , . , e}  such that afinF\UleL Al and I‘\UlcMAl are sets of superficial 
measure zero. Let X I  denote the characteristic function of At; then h‘“’ = X l s ~ h ? )  

L m 2  (or ~ r ) ~ ) .  
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with hi“’ := h‘”’,yI (which is considered as an element of L2(afi)) .  Following NeEas 
(1967, ch 6, o 1.3) there exists a sequence (Li:’, Lj:))kENC wi”(afi)x w;”(a.iz) with 
s u p p ( i i i ’ ) ~  AI which converges to (hi”, hi’)) in the Lz norm. Since W$3”’(afi) is 
dense in W:”(afi) (NeEas 1967, ch5,  04.5), 6:;’ can be approximated by hi;’€ 
Wi3’2’(dfi) with supp(hj;’)C AI; so (hi”, hi’)) is approximated by (hi;’, hi:))kcNC 
W$3’2’(afi) x Wy’2’(dA) in the Lz  norm. Now, there exists a sequence ( $ l k ) k e N C  

wiz’ (fi); then supp(aE$k) = U I E M  AI = r, i.e. $k E vo(fi) and ($k IT, an$k Jr)kENconverges 
to (h“’, h‘”) in LZ(rIZ. 

k1k)k.N c 
w$”*’ (r)4 with supp(h(k) c Al. There exists $lk E w;” (fi) with $lk = hlk on aa; so the 
trace of $k := &cM$lk E w:” (6) has its support within r (i.e. ($k)ksN c vO(fi) and it 
converges to h in L2(r)4). 

w;z)(h) such that az$lk =hi;’ on a f i  (NeEas 1967, ch 2, 5 5.7). Set $k :=Xie~$lk E 

In the case of Dirac’s theory, h E L z ( ~ ) ~  is approximated by 

For the following part, it is convenient to define the inner products 

and 

[ I 3 : Lz(S U st)4 x L2(S U SJ4 + @, 

[ / 3 :L2(S  U sty XL2(S U SJ8 + @, 

~ u I ~ I : =  i I xi*pj da,  (A1.5s) 
i = 1  Sust 

[(Xl,xz)I(Vl, C P ~ ) I : =  C J 2 

X f q j  du, 
i = l  SUS, 

( A 1 . 5 ~ )  
and the linear operators Lz(S US,) + L2(S U St): 

K ( P ( r ) : =  J ~ ( f ,  ?’)cp(r’) da(f’)  
sus, 

for K (f, f’) E {A (f, f’), p (f, f ’ ) ,  p (?, f’), T(?, f’)}, 
tcp(r):= t(r)cp(r),  ancp ( r )  := an (r)cp(r). (A1.6) 

Then SJ  can be written for (X, cp) E W X U and (Sx, Scp) E WO X U0 as 

++I [S,y*(ancp -fbl’) -a,S,y*((p -fbO’)] d a  

+ IF [(a,x * - gb”*)Scp - (,y * - gbo’*)a,Scp] d u  

F 

where 
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or 

where 

-ffn +tp D := 

respectively. 
Since 

(CP IF -fro', a n q  IF -fb”lT E uo(~), 
kIF-gO a&lF-gb”)TE wO(F), 

(& IF, an&’ IF)T E uO(F), 
(A1.8~) 

(sxIF, a n a x I F ) T E  wo(~) ,  (0) 

PIF-fOE UO(F), S q  IF E uO(F), x IF -go  E wO(F), &IF E WO(F), 
( A l . 8 ~ )  

the SF term in equation (A1.7) vanishes due to condition (9). Hence, if it is assumed 
that (x, cp) satisfies (2) and (B), then SJ = 0. 

Conversely, if 6J = 0 for any (ax, Scp) E VO x VO c WO x Vo, consider the restricted 
variations (ax, Scp) E V, := {(ax, S q )  E Vox VO;  (ax, S q )  satisfies (8)). Then SJ = 
(SxI(H-E)cp)+((H-E)xIScp)for (Sx,Scp)~ V,, andsince V,isdenset inL2(RouR1) 
one obtains (H-E)cp = ( H - E ) x  = O  in R O U ~ I .  Substituting this result in (A1.7) 
and choosing (Sx, S q )  E Vo x VO, the condition SJ = 0 yields 

[@/Yo, ~X1)I(~(cpo-tcpl)~Tl = 0, [(Sqi, @o)l(Dki - - t ’~o) )~ l=  0. (A1.9D) 
According to the lemma given above the boundary values a:6cpi and a$3xi have a 
range which is dense in L2(S U St); hence 

(Al.  1 Os) 

Since the operators 

(A 1.1 1s) 
0 0 -1 --t+ 

B : = ( l  t+  0 0 
A := 

A := (-an, -ant), B := (-an, -an t+)  (Al.  1 1 D) 
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have the property 

A C = B D = l  (A.12) 

it can be concluded from (A1.10) that (y, c p )  satisfy the natural boundary conditions 
(8). 

Appendix 2. Condition for symmetric Euler-Lagrange equations 

Using the definitions (A1.4). (A1.5) and (A1.6) J can be written as 

J = /  [ V ~ * V c p + ( w - E ) ~ * c p ] d ~ r  
n o u n ,  

+ [(xo, x1, a,xo, anxl)l(W)(cpo, 91, ancpo, ~"cp1)')'I 

+ t i  J (go+ancp -,y+anfo) d a  
F 

where 

tp - ;an  ant - to 

-p  p t - T a n  ?, T (  t )  := i ( 
respectively. Under the operation (20) J is transformed into 

'=I [Vcp*V~+(w-E)cp*x]d~r  
noun1 

+ [ ( ~ o ,  ~ 1 ,  a n ~ o ,  anp1)I(T((t+)-')Cyo, X I ,  anxo, an~1) ' )~ I  

+ 4i J ( f ;anX - cp +ango)  da .  
F 

The requirement J = .f* yields 

T((t+)- ' )  = T(t)' 
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= (t(r)+(t(r)*)-l)- 'S(?,  ?'I, 

i.e. p = ( t  + (t-')+)-'. 

Because A = (1 - t-'p+)t-', it can be concluded that A = p. 

Appendix 3. Derivation of the 'matching condition' 

Let S be the intersection of a plane z = ZO(ZL<ZO<ZR)  with R and let 2 and 6 be 
of the form (30) but now with planar Fourier coefficients uj and uj belonging to 

Q(zL,zO,  zR):={U:[zL, ZR]'cn; 

Ul[zL.ZOIE v(zL, 20), U I [ z o , r ~ ] E  V(Z0 ,  ZR)}. 

Then SJ = 0 implies equation (34) for z L < z  < Z O  and Z O < Z  < z R  with initial values 
(33), if only such variations 82 and 86 are chosen which are contiyously differentiable 
tor continuous, respectively) at z = to  (i.e. Sui: Sui E V ( z L ,  zR) c V ( z L ,  zo, zR)). SO (34) 
may be inserted into SJ. With Sui and Sui E V(ZL, 2 0 ,  ZR)\V(ZL, ZR), then only the S I, 
term is left, yielding: 

1 6' -F+ \ 
(U (20 + 0) - U (20 - 0)) = 0 

-6' ; + - I ,  I 1' 7*+ I 
or 

( I N y  -3 (U (20 + 0) -U (zo- 0)) = 0, 
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respectively. Here A, c, p^, 7* are of the form 2 with matrix elements 

(A3.2) 

Obviously the ranks of (A3.1s) and (A3.1D) are 2N and 4 N  independently of the 
weight functions A ,  p, p ,  7;  so (A3.1) is equivalent to the matching condition (38). 

Appendix 4. Extension of the non-relativistic variational expression to functions of 
class w:” 
The variational principle can be extended to a larger class of functions in the following 
way. Let Q be defined as function space 

i. := I$: R +  C ;  $In:,) E w:” (a!”) for i = 0,  1 ; j  = 1, . . . , si). (A4.1) 

The boundary conditions ‘dzcpo = tdEcpl and d E x l =  t*dzxo on S US,’ are regarded as 
essential boundary conditions for a = 0 and as natural boundary conditions for a = 1. 
Thus, choosing 7 = 0, the IsUst-terms in equation (19s) vanish. 

For the boundary conditions on the surface F, three special cases are considered. 
(i) Uo(F) = (0) and Wo(F) = L2(F)2 .  Then cp I F  = fbo) is an essential boundary condi- 

tion and ancpIF =fd”  is a natural boundary condition; a:xlF is not subject to any 
boundary condition. The variational expression J is given by 

J = [Vx”Vcp + (w -E)x*cp] d3r - x*fbl) do- (A4.2) 
n o u n 1  F 

with domain {(x, c p )  E c x c; ( P I F  =fdo’, P O =  tcpl and x1 = t*xo on Sus,}. 

boundary conditions. The variational expression is 
(ii) Uo(F) = Wo(F)  = (0)  X L*(F).  Then cp I F  =f!? and x I F  = gdo’ are essential 

J = [Vx*Vcp + (w -E),y*cp] d3r 
noun1 

with domain 

(A4.3) 

(0 )  (0) {(x, c p ) ~  Q X  i.; (PIF = f o  ,XIF=gO , cpo= tcpl and x1= t*xo on Sus,}. 
(iii) u ~ ( F )  = {(f‘”, f“ ’ ) ’~  L~(F) ’ ;  f”’ = U (f“’), f t0’ E ~ o o ( ~ ) ) ,  w~(F) = 

{(g‘”’, g“’)TEL2(F)2; g”’= w(g‘’’), g ‘ ” E  Woo(F)} where Uoo(F) and Woo(F) are linear 
spaces such that Wk”2’ ( F )  c Uoo(F) c L2(F)  and W$”2’ ( F )  c WOO(F) c L z ( F )  and U, w 
are injective linear mappings U : Uoo(F) + L2(F),  w : WOO(F) + Lz(F)  such that 
~ F I W ( g ( o ) ) * f ( o ) - g i o ) * u ( f i O ’ ) ]  d a  = O f o r f ‘ ” ~  UOO(F) and g‘”E Woo(F). Then the boun- 
dary conditions (lo),  (11) can be written as 

(A4.4) (1) ancp =fa) + U ( c p  -fdO)), a n x  = go + w cu - gbo’ ) ; 

these have to be regarded as natural boundary conditions for the variational expression 

J = 5 n o u n 1  F 
[Vx*Vcp +(w -E)x*cp] d3r - I [gb”*cp +,y*fb”] do- 

- t  JF[w~-gbo‘)*(cp -fF’)+k*-ghO)*)u(cp -fb“’)]da 

with domain {(x, c p )  E x v ;  cpo = tcpl and X I =  t*Xo on S US,}. 

(A4.5) 
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For example, the scattering condition (47) can be rewritten in the form (A4.4) 

U ( f"') := ikf"' and w (g'") := -ikg'O) (A4.6) 

(i.e. in the form of Sommerfeld's 'radiation condition' (Sommerfeld 1947)). The 
variational expression is 

with Uoo(F) := Woo(F) := L2(dKR): 

[Vx*Vq + (w -E)x*q]  d3r - {d,[exp(ikzr)]q +x*a,[exp(iklr)]} du 

- ik h* - exp(iktr)][cp - exp(ik~r)] d a  i,, (A4.7) 

defined on WL1) (KR) X W y )  (KR). 
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